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Agenda

• Plan Stability
• Indexing Enhancements
• General Query Performance Enhancements
• Histogram Statistics
• Generalized sparse index and in-memory data cache
• REOPT AUTO
• V10 Query Performance Enhancements
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Click to edit Master title style

Plan Stability 
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Plan Stability Overview

• Ability to backup your static SQL packages

• At REBIND
• Save old copies of packages in Catalog/Directory
• Switch back to previous or original version

• Two flavors
• BASIC

• 2 copies: Current and Previous
• EXTENDED

• 3 copies: Current, Previous, Original
• Default controlled by a ZPARM
• Also supported as REBIND options
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Plan Stability - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

movemove

Chart is to be read from bottom to top
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Plan Stability - EXTENDED support

current copy

previous copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

move

delete

current copy

previous copy

original copy

move

clone

Incoming copy

original copy

clone

delete
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Access Plan Stability Notes

• REBIND PACKAGE …
• PLANMGMT (BASIC)
2 copies: Current and Previous
• PLANMGMT (EXTENDED)
3 copies: Current, Previous, Original

• REBIND PACKAGE …
• SWITCH(PREVIOUS)
Switch between current & previous
• SWITCH(ORIGINAL)
Switch between current & original

• Most bind options can be changed at 
REBIND 

• But a few must be the same …

• FREE PACKAGE  …
• PLANMGMTSCOPE(ALL) –

Free package completely
• PLANMGMTSCOPE(INACTIVE) 

– Free old copies

• Catalog support
• SYSPACKAGE reflects active 

copy
• SYSPACKDEP reflects 

dependencies of all copies
• Other catalogs 

(SYSPKSYSTEM, …) reflect 
metadata for all copies

• Invalidation and Auto Bind
• Each copy invalidated separately
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Click to edit Master title style

Indexing Enhancements 
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Insert/Update/Delete Performance

• DB2 9 addresses several traditional problem areas for high 
bandwidth INSERT/UPDATE/DELETE workloads.

• Log Latch Contention (LC 19) and LRSN Spin (NFM & DS)
• IX Leaf Page Split Overhead 
• Free Space Search Overhead
• IX and DATA hot spots 

• Table Space APPEND Option (can ALTER on and off)
• Not Logged Tablespaces
• Asymmetric Leaf Page Split
• Randomized Index Key
• Larger Index Page Sizes
• Increased Index Look-aside

• Up to 2x increased logging rate
• 10x reduction in LC19 waits
• Adjust LOGBUFF accordingly
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Asymmetric Index Page Split (NFM)

• Index split roughly 50/50 (prior to DB2 9)
• Sequential inserts  ~50% free space

• New algorithm dynamically accommodates a 
varying pattern of inserts

• Up to 90/10 split
• Effective across multiple inserting threads (due 

to tracking at the page level).
• Improve space utilization and reduce 

contention.

• Up to 50% reduction in IX page splits
• Up to 20% reduction in DB2 CPU
• Up to 30% reduction in DB2 ET
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Randomized Index Key (NFM)

• Cannot support order
• Can provide dramatic improvement or degradation!
• Recommend making randomized indexes bufferpool resident
• Can be any one or more columns of an IX key

• Lock contention relief
• LC 6 relief

• Additional getpages
• Additional read/write I/Os
• Increased lock requests

Vs.
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Index Compression (NFM)

Data Index 

Level of compression Row Page (1)

CPU overhead
(who is charged for comp/decomp)

In Acctg In Acctg and/or DBM1 
SRB

Comp in DASD Yes Yes

Comp in BP and Log Yes No

Comp Dictionary Yes No (2)

‘Typical’ Comp Ratio CR 10 - 90% 25 - 75% (3)

Difference between data and index compression

Use DSN1COMP utility to predict index compression ratio.

• Always stored as 4k page on disk
• Best with high BP hit ratio
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Larger Index page Sizes (NFM) 

• 8K, 16K, or 32K page
• Up to 8 times less index split  (16x with asym. IX splits)

• Good for heavy inserts to reduce index splits
• Especially recommended if high LC6 contention in data sharing

• 2 forced log writes per split in data sharing
• Or high LC254 contention in non data sharing shown in IFCID57

• Lower NLEAF & NLEVELS  (more keys per page)
• Exploitation of larger page sizes (> 8K)  more likely without 

index compression
• Better IX look-a-side and getpage avoidance
• Can result in increased (or decreased) I/O overhead

• Up to 50% CPU & 40% ET reduction in DS

• Up to 20% CPU & 30% ET reduction in non DS
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Index Look-aside (CM)
• In V8

• Insert – clustering index only
• Delete – no index lookaside 

• In V9, 
• Insert & Delete – now possible for additional indexes where 

CLUSTERRATIO >= 80%
• IX Update = Delete + Insert

• Potential for big reduction in index getpages and thus CPU 
time

• Benchmark Example - Heavy insert
• Large table, 3 indexes, all in ascending index key sequence,
• 0+6+6=12 index Getpages per average insert in V8
• 0+1+1=2 in V9 

• Big winner for seq. insert, update or delete patterns
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Index on Expression

SELECT *
FROM CUSTOMERS  
WHERE YEAR(BIRTHDATE) = 1971

• DB2 9 supports “index on expression”
• Can turn a stage 2 predicate into indexable

Previous FF = 1/25
Now, RUNSTATS collects 
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3                         
ON ADMF001.CUSTOMERS 

(YEAR(BIRTHDATE) ASC)
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Index Enhancement - Tracking Usage

• Additional indexes require overhead for
• Utilities 

• REORG, RUNSTATS, LOAD etc
• Data maintenance

• INSERT, UPDATE, DELETE
• Disk storage
• Optimization time

• Increases optimizer’s choices

• But identifying unused indexes is a difficult task
• Especially in a dynamic SQL environment
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Tracking Index Usage
• RTS records the index last used date.

• SYSINDEXSPACESTATS.LASTUSED
• Updated once in a 24 hour period

• RTS service task updates at 1st externalization interval (set by 
STATSINT) after 12PM.

• if the index is used by DB2, update occurs.  
• If the index was not used, no update.

• "Used", as defined by DB2 as:
• As an access path for query or fetch.
• For searched UPDATE / DELETE SQL statement.
• As a primary index for referential integrity.
• To support foreign key access
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Click to edit Master title style

General Query 
Performance 
Enhancements 
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GROUP BY Sort Avoidance
• Improved sort avoidance for GROUP BY

• Reorder GROUP BY columns to match available index

• Remove 'constants' from GROUP BY ordering requirement 

• ordering requirement reduced to just C1

SELECT … FROM T1
GROUP BY C2, C1

Index 1 (C1, C2)

GROUP BY in C2, C1 sequence
Index in C1, C2 sequence

SELECT … FROM T1
WHERE C2 = 5
GROUP BY C2, C1

C2 Constant 
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GROUP BY Sort Avoidance
• Continued….

• Allow swapping of ordering columns using transitive closure

• ordering requirement changed to T2.C1, T2.C3

• Improvement for 'partially ordered' cases with unique index

• if we have unique index on C4, C1 
• Sort can be avoided

SELECT … FROM T1, T2
WHERE T1.C1 = T2.C1
GROUP BY T1.C1, T2.C3 Contains T1 & T2

SELECT C1, C2+C3, C4 FROM T1
GROUP BY 1, 2, 3
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GROUP BY Sort Avoidance Implications

• Implications of improved sort avoidance for GROUP BY
• May improve query performance!!!

• Data may be returned in a different order
• Always been true in any DB2 release

• Also true in other DBMSs

• Relational theory states that order is NOT guaranteed without ORDER 
BY
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Sort Improvements

• Reduced workfile usage for very small sorts
• Final sort step requiring 1 page will NOT allocate workfile

• More efficient sort with FETCH FIRST clause
• V8 and prior, 

• Sort would continue to completion
• Then return only the requested ‘n’ rows

• From V9, 
• If the requested ‘n’ rows will fit into a 32K page,

• As the data is scanned, 
• Only the top ‘n’ rows are kept in memory
• Order of the rows is tracked
• No requirement for final sort
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FETCH FIRST V8 Example

• Sort is not avoided via index
• Must sort all qualified rows

C1
9

6

4

10

1

3

7

8

2

5

Sort

Scan
C1
1

2

3

4

5

6

7

8

9

10

Fetch

SELECT C1
FROM  T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

10 row table. 
Who cares? But, 
1 million rows?
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FETCH FIRST DB2 9 Example

• Sort is not avoided via index
• But in-memory swap avoids sort

• Pointers maintain order

C1
9

6

4

10

1

3

7

8

2

5

Scan

1st Fetch

SELECT C1
FROM  T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Suggestion: Add 
FETCH FIRST 
when subset is 

required.

9
6
4
1
3
2 2nd Fetch

3rd Fetch

Memory
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Dynamic Prefetch Enhancements

• Seq. Pref. cannot fall back to Dyn. Pref. at run time
• Plan table may still show ‘S’ for IX + Data access

Sequential Prefetch Dynamic Prefetch
Chosen at bind/prepare time Detected at runtime

Requires hit to a triggering page Tracks sequential access pattern

Only prefetch in one direction Prefetch forward or backward
Used for tablespace scan & LOBs Used for index & index+data access

• ET reductions between 5-50% measured at SVL
• 10-75% reduction in synchronous I/O’s 
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Clusterratio Enhancement

• New Clusterratio formula in DB2 9
• Including new DATAREPEATFACTOR statistic

• Differentiates density and sequential

• Controlled by zparm STATCLUS
• ENHANCED is default
• STANDARD disables, and is NOT recommended

• Recommend RUNSTATS before mass REBIND in DB2 9

Dense (and sequential) Sequential (not dense)
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Parallelism Enhancements
• In V8

• Lowest cost is BEFORE parallelism
• In DB2 9 

• Lowest cost is AFTER parallelism
• Only a subset of plans are considered for 

parallelism

Optimizer

Parallelism

One Lowest 
cost plan 
survives

How to 
parallelize 

these 
plans?
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Additional Parallelism Enhancements

• In V8
•Degree cut on leading table (exception star join)

• In DB2 9 
•Degree can cut on non-leading table

• Benefit for leading workfile, 1-row table etc.

•Histogram statistics exploited for more even distribution
• For index access with NPI

•CPU bound query degree <= # of CPUs * 4
• <= # of CPUs in V8
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Click to edit Master title style

Histogram Statistics 
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RUNSTATS Histogram Statistics

• RUNSTATS will produce equal-depth histogram 
• Each quantile (range) will have approx same number of rows

• Not same number of values
• Another term is range frequency

• Example
• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

• Lets cut that into 3 quantiles.
• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency

1 1 4 3 5/12 

2 6 9 4 4/12

3 10 15 3 3/12
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RUNSTATS Histogram Statistics Notes

• RUNSTATS 
• Maximum 100 quantiles for a column
• Same value columns WILL be in the same quantile
• Quantiles will be similar size but:

• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles
• Null WILL have a separate quantile

• Supports column groups as well as single columns

• Think “frequencies” for high cardinality columns
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Histogram Statistics Example

• SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
• FF = (high-value – low-value) / (high2key – low2key)
• FF = (200612 – 200601) / (200711 – 200602)

• 10% of rows estimated to return

Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly 
distributed between low 
and high range



34

Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
• Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
• 45% of rows estimated to return

No data between 
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612
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Click to edit Master title style

Generalized Sparse Index 
and In-memory Data 
Caching 
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Pre-V9 Sparse Index & in-memory data cache

• V4 introduced sparse index 
• for non-correlated subquery workfiles

• V7 extended sparse index 
• for the materialized work files within star join

• V8 replaced sparse index 
• with in-memory data caching for star join

• Runtime fallback to sparse index when memory is insufficient
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RID

T1 T2 (WF)NLJ

... ...

t1.c = t2.c

KeyBinary Search of sparse index 
to look up “approximate “ 
location of qualified key

Sparse Index 
sorted in t2.c order

Workfile sorted 
in t2.c order

T2
(WF)

How does Sparse Index work?
• Sparse index may be a subset of workfile (WF)

• Example, WF may have 10,000 entries
• Sparse index may have enough space (240K) for 1,000 entries
• Sparse index is “binary searched” to find target location of search key
• At most 10 WF entries are scanned
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Data Caching vs Sparse Index

• Data Caching
• Also known as In-Memory WF
• Is a runtime enhancement to sparse index

• Sparse Index/In-Memory WF
• Extended to non-star join in DB2 9

• New ZPARM MXDTCACH 
• Maximum extent in MB, for data caching per thread
• If memory is insufficient

• Fall-back to sparse index at runtime
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T1 T2 (WF)NLJ

t1.c = t2.cBinary Search of WF to look up 
exact location of qualified key Workfile sorted 

in t2.c order

How does In-Memory WF work?

• Whereas sparse index may be a subset of WF
• IMWF contains the full result (not sparse)
• Example, WF may have 10,000 entries

• IMWF is “binary searched” to find target location of search key

T2
(WF)
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Benefit of Data Caching 

• All tables lacking an index on join column(s):
• Temporary tables
• Subqueries converted to joins
• …..any table

• V9 also supports multi-column sparse index
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Click to edit Master title style

REOPT Auto Based On 
Parameter Marker Change 
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REOPT enhancement for dynamic SQL

• V8 REOPT options
• Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS) 
• Static SQL

• REOPT(NONE, ALWAYS)

• V9 Addition for Dynamic SQL
• Bind option REOPT(AUTO)
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Dynamic SQL REOPT - AUTO

• For dynamic SQL with parameter markers 
• DB2 will automatically reoptimize the SQL when 

• Filtering of one or more of the predicates changes dramatically
• Such that table join sequence or index selection may 

change
• Some statistics cached to improve performance of runtime 

check
• Newly generated access path will replace the global 

statement cache copy.

• First optimization is the same as REOPT(ONCE)
• Followed by analysis of the values supplied at each 

execution of the statement
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Click to edit Master title style

V10  Query Performance 
Enhancements Overview  
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• CPU time reductions for queries, batch, & transactions
• SQL enhancements: Moving Sum, Moving Average, 

temporal, timestamp, implicit cast, SQL PL, …
• pureXML improvements
• Access improvements: Index include columns, hash, index 

list prefetch, workfile spanned records, …
• Optimization techniques

• Remove parallelism restrictions and more even parallel 
distribution. Increased zIIP usage.

• In-memory techniques for faster query performance
• Access path stability and control

• Analysis: instrumentation, Data Studio & Optim Query Tuner
• Advanced query acceleration techniques 

• IBM Smart Analytics Optimizer

DB2 10 Query Enhancements
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Safe Query Optimization  

• V10 - Consider the uncertainty of predicate filtering when 
selecting an index
• Uncertain predicate filtering from non-uniform data, host 

variables or parameter markers 
• DB2 might choose an index that has slightly higher cost 

estimate if that index has a higher cost certainty

• V10 - List prefetch enhancement 
• RID list processing continues in work file when DB2 

exhausts the RID pool resources (avoid R scan) 
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Range List Index Scan - problem to be solved

Table PHONEBOOK

last name first name phone street city …

Index IX1 on (lastname, firstname)

SELECT *
FROM PHONEBOOK

WHERE (LASTNAME=‘SMITH’ AND    
FIRSTNAME>=‘JOHN’) OR 
(LASTNAME>’SMITH’)
ORDER BY LASTNAME, FIRSTNAME
FETCH FIRST 10 ROWS;

Current possible access path
1. Table space scan
2. Non-matching index access 
3. Multi-index access (index ORing)
Both need to retrieve all the qualified rows, sort them for ORDER BY , 
then return 10 first ordered result 

IX1

PHONEBOOK

Ideal access path
Direct index access and avoid ORDER BY sort
Terminate the process after getting first 10 rows
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Range List Index Scan   

• V 10 – DB2 introduces new access method, range list 
access, to process OR predicates
• Range list access is only considered when 

• OR predicate is on leading table
• OR predicate is stage 1 predicate
• Each disjunct has at least one matching column

• New access type ‘NR’ in PLAN_TABLE
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Range List Index Scan Benefits   
• An index access with matching predicates. It can narrow down 

the search scope comparing to tablespace scan or non-
matching index scan.

• It is a single index access instead of multiple indexes access 
(index ORing). Index is exploited once.

• It allows index key ordering to be maintained which is 
significantly important to data-dependent pagination 
application. If the index satisfies order by ordering, sort can be 
avoided.

• Process can be terminated early if only part of result set is 
required (e.g. with FETCH FIRST n ROWS ONLY clause).
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IN-list Predicate Enhancements   

• Index matching on multiple IN-list predicates.

• Predicate transitive closure for IN-list predicates.

• List prefetch.

• New access type – ACTYPE - ‘IN’  and new table type 
TBTYPE – ‘I’ 
• If more than one matching IN-list predicates 
• Each IN-list predicate is an in-memory table   
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View/Table Expression Merge Enhancement   

• More Merge scenarios (instead of physical 
materialization) for View/Table Expressions 

• Especially in outer join.

• More join sequence can be considered.

• Can apply predicates early  
•

• In general a more aggressive Merge strategy for 
View/Table Expressions is preferable.    



Stage 2 Predicate Pushdown to Stage 1

• Example:

CREATE TABLE T1(C1,C2,C3)
CREATE INDEX IX1 ON T1(C1,C2)

SELECT *
FROM T1 WHERE T1.C1 >0
AND T1.C2+1=5 AND T1.C3+2=4 ;

Matching predicate

IM pushdown DM pushdown
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Query Parallelism Enhancements   

• What are the enhancements to reduce query elapsed 
time?

• Dynamic record range partitioning
• Straw model
• Removal of some parallelism restrictions
• SMJ with sparse index on inner table work file

• When the enhancements are not eligible?
• Sysplex parallelism 
• Full outer join queryblock
• IO parallelism
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Dynamic Record Range Partitioning   
• Why record range partitioning?

• Key range partitioning is determined at bind time
• Key range may not be cut evenly due to data skew, data 

correlation and out of date statistics
• Query elapsed time not optimal due to unbalanced amount of 

work in parallel child tasks

• What is dynamic record range partitioning?
• Dynamically materialize the intermediate result in joins

• Result may fit in in-memory work file
• Based on the number of records in the composite table 
• Divide the result into ranges with equal number of records 
• Up to x times reduction in elapsed time with x parallel degree

• If used, dsn_pgroup_table field RANGEKIND = ‘R’
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Parallelism Straw Model 
• Difference vs.  non-straw model

• Number of ranges (elements) > number of degree
• Number of parallel tasks = number of degree

• True for both straw and non straw model
• Each parallel task continues on the next available 

range after it finishes the current one
• Parallel tasks stop after all the ranges are processed

• When it is used?
• Parallel group cost is not too small
• Leading table is index access and the colcard is not too small
• Leading table is R-scan and the number of pages is not too 

small

• If used, dsn_pgroup_table field STRAW_MODEL = ‘Y’



56

Remove Restrictions for Parallelism 

• Parallelism no longer disabled when parallel group 
contains work file from

• Materialized view
• Materialized table expression

• Parallelism no longer disabled in the last parallel group 
of the top query block when multi-row fetch is used

• This restriction is removed under the condition that  the 
cursor is read only

• Parallelism no longer disabled when queryblock 
contains OLAP functions

• OLAP functions are still processed at parent side
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Key Details About DB2 10:  Getting 
Ready

Prerequisites:   migrate from DB2 9 for z/OS or DB2 for z/OS V8
• z/OS V1.10  SMS-managed DB2-managed  DB2 catalog 
• System z10, z9, z890, z990, and above  (no z800, z900)
• DB2 Connect 9 FP1,  9.7 FP3 for many 10 functions, FP2 beta
• IMS 10 & 11 (not 9)    CICS   compilers    (See announcement)
• Info APARs for migration II14477 (9), II14474 (8)
• SPE PK56922 PK69411 PK61766 PK85956 PM04680 PK87280  

PK87281 PM08102 PM08105
• Premigration check DSNTIJPA  PM04968
Items deprecated in earlier versions eliminated: more for V8 mig.
• Private protocol  DRDA   (DSNTP2DP, PK92339, PK64045)
• Old plans and packages V5 or before REBIND
• Plans containing DBRMs  packages     PK62876   PK79925 (V8)
• ACQUIRE(ALLOCATE)  ACQUIRE(USE)
• Old plan table formats  DB2 V8 or 9, Unicode, 59 cols PK85068
• BookManager use for DB2 publications  Info Center, pdf
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