
Exciting Optimizer and SQL Performance
Enhancements in DB2 9 for z/OS and
Beyond
James Guo
IBM Silicon Valley Lab

August 3, 2010 3 pm – 4 pm
Session Number 7966

2

© Copyright IBM Corporation [current year]. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence
in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks
owned by IBM at the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml�

3

Agenda

• Plan Stability
• Indexing Enhancements
• General Query Performance Enhancements
• Histogram Statistics
• Generalized sparse index and in-memory data cache
• REOPT AUTO
• V10 Query Performance Enhancements

4

Click to edit Master title style

Plan Stability

5

Plan Stability Overview

• Ability to backup your static SQL packages

• At REBIND
• Save old copies of packages in Catalog/Directory
• Switch back to previous or original version

• Two flavors
• BASIC

• 2 copies: Current and Previous
• EXTENDED

• 3 copies: Current, Previous, Original
• Default controlled by a ZPARM
• Also supported as REBIND options

6

Plan Stability - BASIC support

Current copy

previous copy

Incoming copy

REBIND … PLANMGMT(BASIC) REBIND … SWITCH(PREVIOUS)

current copy

previous copy

move

delete

movemove

Chart is to be read from bottom to top

7

Plan Stability - EXTENDED support

current copy

previous copy

REBIND … PLANMGMT(EXTENDED) REBIND … SWITCH(ORIGINAL)

move

delete

current copy

previous copy

original copy

move

clone

Incoming copy

original copy

clone

delete

8

Access Plan Stability Notes

• REBIND PACKAGE …
• PLANMGMT (BASIC)
2 copies: Current and Previous
• PLANMGMT (EXTENDED)
3 copies: Current, Previous, Original

• REBIND PACKAGE …
• SWITCH(PREVIOUS)
Switch between current & previous
• SWITCH(ORIGINAL)
Switch between current & original

• Most bind options can be changed at
REBIND

• But a few must be the same …

• FREE PACKAGE …
• PLANMGMTSCOPE(ALL) –

Free package completely
• PLANMGMTSCOPE(INACTIVE)

– Free old copies

• Catalog support
• SYSPACKAGE reflects active

copy
• SYSPACKDEP reflects

dependencies of all copies
• Other catalogs

(SYSPKSYSTEM, …) reflect
metadata for all copies

• Invalidation and Auto Bind
• Each copy invalidated separately

9

Click to edit Master title style

Indexing Enhancements

10

Insert/Update/Delete Performance

• DB2 9 addresses several traditional problem areas for high
bandwidth INSERT/UPDATE/DELETE workloads.

• Log Latch Contention (LC 19) and LRSN Spin (NFM & DS)
• IX Leaf Page Split Overhead
• Free Space Search Overhead
• IX and DATA hot spots

• Table Space APPEND Option (can ALTER on and off)
• Not Logged Tablespaces
• Asymmetric Leaf Page Split
• Randomized Index Key
• Larger Index Page Sizes
• Increased Index Look-aside

• Up to 2x increased logging rate
• 10x reduction in LC19 waits
• Adjust LOGBUFF accordingly

11

Asymmetric Index Page Split (NFM)

• Index split roughly 50/50 (prior to DB2 9)
• Sequential inserts  ~50% free space

• New algorithm dynamically accommodates a
varying pattern of inserts

• Up to 90/10 split
• Effective across multiple inserting threads (due

to tracking at the page level).
• Improve space utilization and reduce

contention.

• Up to 50% reduction in IX page splits
• Up to 20% reduction in DB2 CPU
• Up to 30% reduction in DB2 ET

12

Randomized Index Key (NFM)

• Cannot support order
• Can provide dramatic improvement or degradation!
• Recommend making randomized indexes bufferpool resident
• Can be any one or more columns of an IX key

• Lock contention relief
• LC 6 relief

• Additional getpages
• Additional read/write I/Os
• Increased lock requests

Vs.

13

Index Compression (NFM)

Data Index

Level of compression Row Page (1)

CPU overhead
(who is charged for comp/decomp)

In Acctg In Acctg and/or DBM1
SRB

Comp in DASD Yes Yes

Comp in BP and Log Yes No

Comp Dictionary Yes No (2)

‘Typical’ Comp Ratio CR 10 - 90% 25 - 75% (3)

Difference between data and index compression

Use DSN1COMP utility to predict index compression ratio.

• Always stored as 4k page on disk
• Best with high BP hit ratio

14

Larger Index page Sizes (NFM)

• 8K, 16K, or 32K page
• Up to 8 times less index split (16x with asym. IX splits)

• Good for heavy inserts to reduce index splits
• Especially recommended if high LC6 contention in data sharing

• 2 forced log writes per split in data sharing
• Or high LC254 contention in non data sharing shown in IFCID57

• Lower NLEAF & NLEVELS (more keys per page)
• Exploitation of larger page sizes (> 8K) more likely without

index compression
• Better IX look-a-side and getpage avoidance
• Can result in increased (or decreased) I/O overhead

• Up to 50% CPU & 40% ET reduction in DS

• Up to 20% CPU & 30% ET reduction in non DS

15

Index Look-aside (CM)
• In V8

• Insert – clustering index only
• Delete – no index lookaside

• In V9,
• Insert & Delete – now possible for additional indexes where

CLUSTERRATIO >= 80%
• IX Update = Delete + Insert

• Potential for big reduction in index getpages and thus CPU
time

• Benchmark Example - Heavy insert
• Large table, 3 indexes, all in ascending index key sequence,
• 0+6+6=12 index Getpages per average insert in V8
• 0+1+1=2 in V9

• Big winner for seq. insert, update or delete patterns

16

Index on Expression

SELECT *
FROM CUSTOMERS
WHERE YEAR(BIRTHDATE) = 1971

• DB2 9 supports “index on expression”
• Can turn a stage 2 predicate into indexable

Previous FF = 1/25
Now, RUNSTATS collects
frequencies. Improved FF accuracy

CREATE INDEX ADMF001.CUSTIX3
ON ADMF001.CUSTOMERS

(YEAR(BIRTHDATE) ASC)

17

Index Enhancement - Tracking Usage

• Additional indexes require overhead for
• Utilities

• REORG, RUNSTATS, LOAD etc
• Data maintenance

• INSERT, UPDATE, DELETE
• Disk storage
• Optimization time

• Increases optimizer’s choices

• But identifying unused indexes is a difficult task
• Especially in a dynamic SQL environment

18

Tracking Index Usage
• RTS records the index last used date.

• SYSINDEXSPACESTATS.LASTUSED
• Updated once in a 24 hour period

• RTS service task updates at 1st externalization interval (set by
STATSINT) after 12PM.

• if the index is used by DB2, update occurs.
• If the index was not used, no update.

• "Used", as defined by DB2 as:
• As an access path for query or fetch.
• For searched UPDATE / DELETE SQL statement.
• As a primary index for referential integrity.
• To support foreign key access

19

Click to edit Master title style

General Query
Performance
Enhancements

20

GROUP BY Sort Avoidance
• Improved sort avoidance for GROUP BY

• Reorder GROUP BY columns to match available index

• Remove 'constants' from GROUP BY ordering requirement

• ordering requirement reduced to just C1

SELECT … FROM T1
GROUP BY C2, C1

Index 1 (C1, C2)

GROUP BY in C2, C1 sequence
Index in C1, C2 sequence

SELECT … FROM T1
WHERE C2 = 5
GROUP BY C2, C1

C2 Constant

21

GROUP BY Sort Avoidance
• Continued….

• Allow swapping of ordering columns using transitive closure

• ordering requirement changed to T2.C1, T2.C3

• Improvement for 'partially ordered' cases with unique index

• if we have unique index on C4, C1
• Sort can be avoided

SELECT … FROM T1, T2
WHERE T1.C1 = T2.C1
GROUP BY T1.C1, T2.C3 Contains T1 & T2

SELECT C1, C2+C3, C4 FROM T1
GROUP BY 1, 2, 3

22

GROUP BY Sort Avoidance Implications

• Implications of improved sort avoidance for GROUP BY
• May improve query performance!!!

• Data may be returned in a different order
• Always been true in any DB2 release

• Also true in other DBMSs

• Relational theory states that order is NOT guaranteed without ORDER
BY

23

Sort Improvements

• Reduced workfile usage for very small sorts
• Final sort step requiring 1 page will NOT allocate workfile

• More efficient sort with FETCH FIRST clause
• V8 and prior,

• Sort would continue to completion
• Then return only the requested ‘n’ rows

• From V9,
• If the requested ‘n’ rows will fit into a 32K page,

• As the data is scanned,
• Only the top ‘n’ rows are kept in memory
• Order of the rows is tracked
• No requirement for final sort

24

FETCH FIRST V8 Example

• Sort is not avoided via index
• Must sort all qualified rows

C1
9

6

4

10

1

3

7

8

2

5

Sort

Scan
C1
1

2

3

4

5

6

7

8

9

10

Fetch

SELECT C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

10 row table.
Who cares? But,
1 million rows?

25

FETCH FIRST DB2 9 Example

• Sort is not avoided via index
• But in-memory swap avoids sort

• Pointers maintain order

C1
9

6

4

10

1

3

7

8

2

5

Scan

1st Fetch

SELECT C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Suggestion: Add
FETCH FIRST
when subset is

required.

9
6
4
1
3
2 2nd Fetch

3rd Fetch

Memory

26

Dynamic Prefetch Enhancements

• Seq. Pref. cannot fall back to Dyn. Pref. at run time
• Plan table may still show ‘S’ for IX + Data access

Sequential Prefetch Dynamic Prefetch
Chosen at bind/prepare time Detected at runtime

Requires hit to a triggering page Tracks sequential access pattern

Only prefetch in one direction Prefetch forward or backward
Used for tablespace scan & LOBs Used for index & index+data access

• ET reductions between 5-50% measured at SVL
• 10-75% reduction in synchronous I/O’s

27

Clusterratio Enhancement

• New Clusterratio formula in DB2 9
• Including new DATAREPEATFACTOR statistic

• Differentiates density and sequential

• Controlled by zparm STATCLUS
• ENHANCED is default
• STANDARD disables, and is NOT recommended

• Recommend RUNSTATS before mass REBIND in DB2 9

Dense (and sequential) Sequential (not dense)

28

Parallelism Enhancements
• In V8

• Lowest cost is BEFORE parallelism
• In DB2 9

• Lowest cost is AFTER parallelism
• Only a subset of plans are considered for

parallelism

Optimizer

Parallelism

One Lowest
cost plan
survives

How to
parallelize

these
plans?

29

Additional Parallelism Enhancements

• In V8
•Degree cut on leading table (exception star join)

• In DB2 9
•Degree can cut on non-leading table

• Benefit for leading workfile, 1-row table etc.

•Histogram statistics exploited for more even distribution
• For index access with NPI

•CPU bound query degree <= # of CPUs * 4
• <= # of CPUs in V8

30

Click to edit Master title style

Histogram Statistics

31

RUNSTATS Histogram Statistics

• RUNSTATS will produce equal-depth histogram
• Each quantile (range) will have approx same number of rows

• Not same number of values
• Another term is range frequency

• Example
• 1, 3, 3, 4, 4, 6, 7, 8, 9, 10, 12, 15 (sequenced)

• Lets cut that into 3 quantiles.
• 1, 3, 3, 4 ,4 6,7,8,9 10,12,15

Seq No Low Value High Value Cardinality Frequency

1 1 4 3 5/12

2 6 9 4 4/12

3 10 15 3 3/12

32

RUNSTATS Histogram Statistics Notes

• RUNSTATS
• Maximum 100 quantiles for a column
• Same value columns WILL be in the same quantile
• Quantiles will be similar size but:

• Will try to avoid big gaps inside quantiles
• Highvalue and lowvalue may have separate quantiles
• Null WILL have a separate quantile

• Supports column groups as well as single columns

• Think “frequencies” for high cardinality columns

33

Histogram Statistics Example

• SAP uses INTEGER (or VARCHAR) for YEAR-MONTH

• Assuming data for 2006 & 2007
• FF = (high-value – low-value) / (high2key – low2key)
• FF = (200612 – 200601) / (200711 – 200602)

• 10% of rows estimated to return

Data Distribution - Even Distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

200601 200712

Year/Month

WHERE YEARMONTH BETWEEN 200601 AND 200612

Data assumed as evenly
distributed between low
and high range

34

Histogram Statistics Example

Data Distribution - Histograms

0

200000

400000

600000

800000

1000000

1200000

1400000

2006 01-12 200613 -----> -----> 200700 2007 01-12

Year/Month

• Example (cont.)
• Data only exists in ranges 200601-12 & 200701-12

• Collect via histograms
• 45% of rows estimated to return

No data between
200613 & 200700

WHERE YEARMONTH BETWEEN 200601 AND 200612

35

Click to edit Master title style

Generalized Sparse Index
and In-memory Data
Caching

36

Pre-V9 Sparse Index & in-memory data cache

• V4 introduced sparse index
• for non-correlated subquery workfiles

• V7 extended sparse index
• for the materialized work files within star join

• V8 replaced sparse index
• with in-memory data caching for star join

• Runtime fallback to sparse index when memory is insufficient

37

RID

T1 T2 (WF)NLJ

... ...

t1.c = t2.c

KeyBinary Search of sparse index
to look up “approximate “
location of qualified key

Sparse Index
sorted in t2.c order

Workfile sorted
in t2.c order

T2
(WF)

How does Sparse Index work?
• Sparse index may be a subset of workfile (WF)

• Example, WF may have 10,000 entries
• Sparse index may have enough space (240K) for 1,000 entries
• Sparse index is “binary searched” to find target location of search key
• At most 10 WF entries are scanned

38

Data Caching vs Sparse Index

• Data Caching
• Also known as In-Memory WF
• Is a runtime enhancement to sparse index

• Sparse Index/In-Memory WF
• Extended to non-star join in DB2 9

• New ZPARM MXDTCACH
• Maximum extent in MB, for data caching per thread
• If memory is insufficient

• Fall-back to sparse index at runtime

39

T1 T2 (WF)NLJ

t1.c = t2.cBinary Search of WF to look up
exact location of qualified key Workfile sorted

in t2.c order

How does In-Memory WF work?

• Whereas sparse index may be a subset of WF
• IMWF contains the full result (not sparse)
• Example, WF may have 10,000 entries

• IMWF is “binary searched” to find target location of search key

T2
(WF)

40

Benefit of Data Caching

• All tables lacking an index on join column(s):
• Temporary tables
• Subqueries converted to joins
• …..any table

• V9 also supports multi-column sparse index

41

Click to edit Master title style

REOPT Auto Based On
Parameter Marker Change

42

REOPT enhancement for dynamic SQL

• V8 REOPT options
• Dynamic SQL

• REOPT(NONE, ONCE, ALWAYS)
• Static SQL

• REOPT(NONE, ALWAYS)

• V9 Addition for Dynamic SQL
• Bind option REOPT(AUTO)

43

Dynamic SQL REOPT - AUTO

• For dynamic SQL with parameter markers
• DB2 will automatically reoptimize the SQL when

• Filtering of one or more of the predicates changes dramatically
• Such that table join sequence or index selection may

change
• Some statistics cached to improve performance of runtime

check
• Newly generated access path will replace the global

statement cache copy.

• First optimization is the same as REOPT(ONCE)
• Followed by analysis of the values supplied at each

execution of the statement

44

Click to edit Master title style

V10 Query Performance
Enhancements Overview

45

• CPU time reductions for queries, batch, & transactions
• SQL enhancements: Moving Sum, Moving Average,

temporal, timestamp, implicit cast, SQL PL, …
• pureXML improvements
• Access improvements: Index include columns, hash, index

list prefetch, workfile spanned records, …
• Optimization techniques

• Remove parallelism restrictions and more even parallel
distribution. Increased zIIP usage.

• In-memory techniques for faster query performance
• Access path stability and control

• Analysis: instrumentation, Data Studio & Optim Query Tuner
• Advanced query acceleration techniques

• IBM Smart Analytics Optimizer

DB2 10 Query Enhancements

46

Safe Query Optimization

• V10 - Consider the uncertainty of predicate filtering when
selecting an index
• Uncertain predicate filtering from non-uniform data, host

variables or parameter markers
• DB2 might choose an index that has slightly higher cost

estimate if that index has a higher cost certainty

• V10 - List prefetch enhancement
• RID list processing continues in work file when DB2

exhausts the RID pool resources (avoid R scan)

47

Range List Index Scan - problem to be solved

Table PHONEBOOK

last name first name phone street city …

Index IX1 on (lastname, firstname)

SELECT *
FROM PHONEBOOK

WHERE (LASTNAME=‘SMITH’ AND
FIRSTNAME>=‘JOHN’) OR
(LASTNAME>’SMITH’)
ORDER BY LASTNAME, FIRSTNAME
FETCH FIRST 10 ROWS;

Current possible access path
1. Table space scan
2. Non-matching index access
3. Multi-index access (index ORing)
Both need to retrieve all the qualified rows, sort them for ORDER BY ,
then return 10 first ordered result

IX1

PHONEBOOK

Ideal access path
Direct index access and avoid ORDER BY sort
Terminate the process after getting first 10 rows

48

Range List Index Scan

• V 10 – DB2 introduces new access method, range list
access, to process OR predicates
• Range list access is only considered when

• OR predicate is on leading table
• OR predicate is stage 1 predicate
• Each disjunct has at least one matching column

• New access type ‘NR’ in PLAN_TABLE

49

Range List Index Scan Benefits
• An index access with matching predicates. It can narrow down

the search scope comparing to tablespace scan or non-
matching index scan.

• It is a single index access instead of multiple indexes access
(index ORing). Index is exploited once.

• It allows index key ordering to be maintained which is
significantly important to data-dependent pagination
application. If the index satisfies order by ordering, sort can be
avoided.

• Process can be terminated early if only part of result set is
required (e.g. with FETCH FIRST n ROWS ONLY clause).

50

IN-list Predicate Enhancements

• Index matching on multiple IN-list predicates.

• Predicate transitive closure for IN-list predicates.

• List prefetch.

• New access type – ACTYPE - ‘IN’ and new table type
TBTYPE – ‘I’
• If more than one matching IN-list predicates
• Each IN-list predicate is an in-memory table

51

View/Table Expression Merge Enhancement

• More Merge scenarios (instead of physical
materialization) for View/Table Expressions

• Especially in outer join.

• More join sequence can be considered.

• Can apply predicates early
•

• In general a more aggressive Merge strategy for
View/Table Expressions is preferable.

Stage 2 Predicate Pushdown to Stage 1

• Example:

CREATE TABLE T1(C1,C2,C3)
CREATE INDEX IX1 ON T1(C1,C2)

SELECT *
FROM T1 WHERE T1.C1 >0
AND T1.C2+1=5 AND T1.C3+2=4 ;

Matching predicate

IM pushdown DM pushdown

53

Query Parallelism Enhancements

• What are the enhancements to reduce query elapsed
time?

• Dynamic record range partitioning
• Straw model
• Removal of some parallelism restrictions
• SMJ with sparse index on inner table work file

• When the enhancements are not eligible?
• Sysplex parallelism
• Full outer join queryblock
• IO parallelism

54

Dynamic Record Range Partitioning
• Why record range partitioning?

• Key range partitioning is determined at bind time
• Key range may not be cut evenly due to data skew, data

correlation and out of date statistics
• Query elapsed time not optimal due to unbalanced amount of

work in parallel child tasks

• What is dynamic record range partitioning?
• Dynamically materialize the intermediate result in joins

• Result may fit in in-memory work file
• Based on the number of records in the composite table
• Divide the result into ranges with equal number of records
• Up to x times reduction in elapsed time with x parallel degree

• If used, dsn_pgroup_table field RANGEKIND = ‘R’

55

Parallelism Straw Model
• Difference vs. non-straw model

• Number of ranges (elements) > number of degree
• Number of parallel tasks = number of degree

• True for both straw and non straw model
• Each parallel task continues on the next available

range after it finishes the current one
• Parallel tasks stop after all the ranges are processed

• When it is used?
• Parallel group cost is not too small
• Leading table is index access and the colcard is not too small
• Leading table is R-scan and the number of pages is not too

small

• If used, dsn_pgroup_table field STRAW_MODEL = ‘Y’

56

Remove Restrictions for Parallelism

• Parallelism no longer disabled when parallel group
contains work file from

• Materialized view
• Materialized table expression

• Parallelism no longer disabled in the last parallel group
of the top query block when multi-row fetch is used

• This restriction is removed under the condition that the
cursor is read only

• Parallelism no longer disabled when queryblock
contains OLAP functions

• OLAP functions are still processed at parent side

57

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements, or other publicly available sources. IBM has not tested
those products and cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

The information on the new product is intended to outline our
general product direction and it should not be relied on in making a
purchasing decision. The information on the new product is for
informational purposes only and may not be incorporated into any
contract. The information on the new product is not a commitment,
promise, or legal obligation to deliver any material, code or
functionality. The development, release, and timing of any features
or functionality described for our products remains at our sole
discretion. *
This information may contain examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious, and any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

Trademarks The following terms are trademarks or registered trademarks of other companies and have been used in at least one of the pages of the presentation:

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both: AIX, AS/400, DataJoiner, DataPropagator, DB2, DB2
Connect, DB2 Extenders, DB2 OLAP Server, DB2 Universal Database, Distributed Relational Database Architecture, DRDA, eServer, IBM, IMS, iSeries, MVS, Net.Data, OS/390,
OS/400, PowerPC, pSeries, RS/6000, SQL/400, SQL/DS, Tivoli, VisualAge, VM/ESA, VSE/ESA, WebSphere, z/OS, zSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Disclaimer/Trademarks

58

Key Details About DB2 10: Getting
Ready

Prerequisites: migrate from DB2 9 for z/OS or DB2 for z/OS V8
• z/OS V1.10 SMS-managed DB2-managed DB2 catalog
• System z10, z9, z890, z990, and above (no z800, z900)
• DB2 Connect 9 FP1, 9.7 FP3 for many 10 functions, FP2 beta
• IMS 10 & 11 (not 9) CICS compilers (See announcement)
• Info APARs for migration II14477 (9), II14474 (8)
• SPE PK56922 PK69411 PK61766 PK85956 PM04680 PK87280

PK87281 PM08102 PM08105
• Premigration check DSNTIJPA PM04968
Items deprecated in earlier versions eliminated: more for V8 mig.
• Private protocol  DRDA (DSNTP2DP, PK92339, PK64045)
• Old plans and packages V5 or before REBIND
• Plans containing DBRMs  packages PK62876 PK79925 (V8)
• ACQUIRE(ALLOCATE)  ACQUIRE(USE)
• Old plan table formats  DB2 V8 or 9, Unicode, 59 cols PK85068
• BookManager use for DB2 publications  Info Center, pdf

Exciting Optimizer & SQL
Performance Enhancements in
DB2 9 for z/OS and Beyond

James Guo, guojw@us.ibm.com
IBM Silicon Valley Lab

	Exciting Optimizer and SQL Performance Enhancements in DB2 9 for z/OS and Beyond
	Disclaimer
	Agenda
	Click to edit Master title style
	Plan Stability Overview
	Plan Stability - BASIC support
	Plan Stability - EXTENDED support
	Access Plan Stability Notes
	Click to edit Master title style
	Insert/Update/Delete Performance
	Asymmetric Index Page Split (NFM)
	Randomized Index Key (NFM)
	Index Compression (NFM)
	Larger Index page Sizes (NFM)
	Index Look-aside (CM)
	Index on Expression
	Index Enhancement - Tracking Usage
	Tracking Index Usage
	Click to edit Master title style
	GROUP BY Sort Avoidance
	GROUP BY Sort Avoidance
	GROUP BY Sort Avoidance Implications
	Sort Improvements
	FETCH FIRST V8 Example
	FETCH FIRST DB2 9 Example
	Dynamic Prefetch Enhancements
	Clusterratio Enhancement
	Parallelism Enhancements
	Additional Parallelism Enhancements
	Click to edit Master title style
	RUNSTATS Histogram Statistics
	RUNSTATS Histogram Statistics Notes
	Histogram Statistics Example
	Histogram Statistics Example
	Click to edit Master title style
	Pre-V9 Sparse Index & in-memory data cache
	How does Sparse Index work?
	Data Caching vs Sparse Index
	How does In-Memory WF work?
	 Benefit of Data Caching
	Click to edit Master title style
	REOPT enhancement for dynamic SQL
	Dynamic SQL REOPT - AUTO
	Click to edit Master title style
	DB2 10 Query Enhancements
	Safe Query Optimization
	Range List Index Scan - problem to be solved
	Range List Index Scan
	Range List Index Scan Benefits
	IN-list Predicate Enhancements
	View/Table Expression Merge Enhancement
	Stage 2 Predicate Pushdown to Stage 1
	Query Parallelism Enhancements
	Dynamic Record Range Partitioning
	Parallelism Straw Model
	Remove Restrictions for Parallelism
	Slide Number 57
	Key Details About DB2 10: Getting Ready
	Exciting Optimizer & SQL Performance Enhancements in DB2 9 for z/OS and Beyond

